
Horndeski Equations Summary

Tessa Baker

May 9, 2018

What’s in this document:

• The Lagrangian of Horndeski gravity and some notational preliminaries;

• The homogeneous background field equations;

• The full set of linearised field equations with αH 6= 0 (αH is the ‘Beyond Horndeski’ parameter);

• The growth equation for Φ (+ associated constraint equation) for αH = 0, for both general and pressureless matter
sectors;

• The quasistatic limit in terms of a modified Poisson and slip relation, a.k.a. Geff and γ, for αH = 0.

1 Action and Notation

Two key resources for linear perturbation theory in Horndeski are:

• Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity, Emilio Bellini &
Iggy Sawicki, https://arxiv.org/abs/1404.3713.

• A unifying description of dark energy, Jerome Gleyzes, David Langlois & Filippo Vernizzi,
https://arxiv.org/abs/1411.3712v2.

The reason both are needed: the Bellini paper contains the first appearance of the Horndeski alpha parameters (see below),
and uses the notation implemented in hiClass. However, at the time of its publication, the fifth ‘Beyond Horndeski’
parameter was not known. The Gleyzes paper contains the full set of equations including the fifth parameter. However,
it has a few minor notational differences from Bellini, which (presumably) don’t match hiClass.

Also, for the equations in §4, the Bellini paper assumes pressureless matter whilst the Gleyzes paper does not.
Specifically:

Bellini Gleyzes
X = − 1

2∇
µφ∇µφ X = ∇µφ∇µφ

−G3 G3

G4X −2G4X

− 1
6G5X

1
3G5X

−αB 2αB
Φ Ψ
Ψ Φ
vx −π

pmπm −σm

In the notation above, G4X is shorthand for dG4/dX. Hence most of the different factors of −2 above are the result of the
different definitions of X in the first line. The penultimate entry is the variable that contains the scalar field perturbation,
and the last entry is the anisotropic stress of matter.

In the Bellini notation, the Lagrangian is:
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S =

∫
d4x
√
−g

[
5∑
i=2

Li + Lm[gµν ]

]
,

L2 = K(φ, X) ,

L3 = −G3(φ, X)�φ ,

L4 = G4(φ, X)R+G4X(φ, X)
[
(�φ)

2 − φ;µνφ
;µν
]
,

L5 = G5(φ, X)Gµνφ
;µν − 1

6
G5X(φ, X)

[
(�φ)

3
+ 2φ;µ

νφ;ν
αφ;α

µ − 3φ;µνφ
;µν�φ

]
.

In this note we will use the following form of the perturbed line element:

ds2 = − (1 + 2Ψ) dt2 + a(t)2 (1− 2Φ) dxidx
i (1)

2 Background Equations

The effective Planck mass is given by (note, generally time-evolving):

M2
∗ ≡ 2

(
G4 − 2XG4X +XG5φ − φ̇HXG5X

)
, (2)

where φ here is the homogeneous value of the scalar field, i.e. φ = φ̄. Note that the above expression defines the parameter
αM through:

αM ≡ H−1 d lnM2
∗

dt
. (3)

The Friedmann equations are (dots denoting derivatives w.r.t. physical time):

3H2 =
1

M2
∗

[ρm + E ] (4)

2Ḣ + 3H2 = − 1

M2
∗

[pm + P]

where the effective energy density and pressure of the Horndeski sector are:

E ≡ −K + 2X (KX −G3φ) + 6φ̇H (XG3X −G4φ − 2XG4φX) (5)

+12H2X (G4X + 2XG4XX −G5φ −XG5φX) + 4φ̇H3X (G5X +XG5XX) ,

P = K − 2X (G3φ − 2G4φφ) + 4φ̇H (G4φ − 2XG4φX +XG5φφ) (6)

−M2
∗αBH

φ̈

φ̇
− 4H2X2G5φX + 2φ̇H3XG5X .

But I suppose the above are not needed if one wishes to parameterise in the usual e.o.s. way, wX = P/E .
Note that ρm obeys its usual conservation law, BUT the quantity (ρm/M

2
∗ ) does not, due to the time-dependence of

the denominator. So beware which is implied/implemented in a code. In other contexts, we sometimes work in Planck
units and hence hide the M2

∗ ; that can’t be done here.

3 Perturbation Equations (Full Set)

Here I have taken the linearised field equations from Gleyzes, but converted them to Bellini notation, as per §1. vx is the
(normalised) perturbation of the scalar field, vx = −δφ/φ̇. (Not to be confused/related in any way to vm, the velocity
perturbation of the matter sector.)

There are four principal ‘alpha’ parameters; αM is given by eqs.(2) and (3) above, and the remaining three are related
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to the Gi functions appearing in the Horndeski Lagrangian by:

H2M2
∗αK = 2X (KX + 2XKXX − 2G3φ − 2XG3φX) + (7)

+ 12φ̇XH (G3X +XG3XX − 3G4φX − 2XG4φXX) +

+ 12XH2
(
G4X + 8XG4XX + 4X2G4XXX

)
−

− 12XH2
(
G5φ + 5XG5φX + 2X2G5φXX

)
+

+ 4φ̇XH3
(
3G5X + 7XG5XX + 2X2G5XXX

)
HM2

∗αB = 2φ̇ (XG3X −G4φ − 2XG4φX) + (8)

+ 8XH (G4X + 2XG4XX −G5φ −XG5φX) +

+ 2φ̇XH2 (3G5X + 2XG5XX)

M2
∗αT = 2X

(
2G4X − 2G5φ −

(
φ̈− φ̇H

)
G5X

)
(9)

These alpha parameters are more closely linked to observations and physical effects than the Gi’s in the Lagrangian.
Hence they are the things to be focussed on. EDIT: These expressions can be simplified in light of the results
from GW170817. The simplest interpretation of these sets αT = 0, or equivalently, G4X = G5 = 0 (and by
implication their derivatives, e.g. G4XX , also equal to zero).

There is also a fifth alpha, the Beyond Horndeski parameter αH , which appears in the first set of equations below.
This is present if additional disformal terms are added to the Lagrangian in eq.(1). I won’t delve in to this complication
here, though I can do the necessary legwork if we decide that this is something we want to pursue in future. Full details
can be found in the Gleyzes paper referenced above.

The linearised field equations are:

00 : 3(2− αB)HΦ̇ + (6− αK − 6αB)H2Ψ + 2(1 + αH)
k2

a2
Φ

− (αK + 3αB)H2v̇x − 6

[
(1− αB

2
)Ḣ +

ρm + pm

2M∗
2 +

1

3

k2

a2

(
αH +

αB
2

)]
Hvx = − δρm

M∗
2 , (10)

0i : 2Φ̇ + (2− αB)HΨ−HαB v̇x −
(

2Ḣ +
ρm + pm

M∗
2

)
vx = − (ρm + pm)vm

M∗
2 . (11)

ij traceless : (1 + αH)Ψ− (1 + αT )Φ− (αM − αT )Hvx + αH v̇x =
pmπm

M∗
2 , (12)

trace : 2Φ̈ + 2(3 + αM )HΦ̇ + (2− αB)HΨ̇

+ 2

[
Ḣ − ρm + pm

2M∗
2 − 1

2
(αBH)· + (3 + αM )

(
1

1

2
αB

)
H2

]
Ψ

−HαB v̈x + 2

[
Ḣ +

ρm + pm

2M∗
2 +

1

2
(αBH)· + (3 + αM )

αB
2
H2

]
v̇x

− 2

[
(3 + αM )HḢ +

ṗm

2M∗
2 + Ḧ

]
vx =

1

M∗
2

(
δpm +

2

3

k2

a2
(pmπm)

)
. (13)

The evolution equation for π reads

H2αK v̈x +
{[
H2(3 + αM ) + Ḣ

]
αK + (HαK)·

}
Hv̇x (14)

+ 3

{(
Ḣ +

ρm + pm

2M∗
2

)
2Ḣ − ḢαB

[
H2(3 + αM ) + Ḣ

]
−H(ḢαB)·

}
vx (15)

− 2
k2

a2

{
Ḣ +

ρm + pm

2M∗
2 +H2

[
1− 1

2
αB(1 + αM ) + αT − (1 + αH)(1 + αM )

]
−
(
H
(αB

2
+ αH

))·}
vx (16)

+ 3HαBΦ̈ +H2(3αB + αK)Ψ̇− 3

[
2Ḣ +

ρm + pm

M∗
2 −H2αB(3 + αM )− (αBH)·

]
Φ̇ (17)

−
[
6

(
Ḣ +

ρm + pm

2M∗
2

)
−H2(3αB + αK)(3 + αM )− (9αB + 2αK)Ḣ −H(3α̇B + α̇K)

]
HΨ (18)

− 2
k2

a2

{
αHΦ̇ + [H(αM + αH(1 + αM )− αT )− α̇H ] Φ−

(
αH +

1

2
αB

)
HΨ

}
= 0 . (19)
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4 Growth System

4.1 General Matter Sector

The full set of field equations above is somewhat messy. A somewhat more convenient system to solve can be formed by
eliminating the scalar field perturbation from eqs.(10), (11) and (13) (involves taking a time derivative of eq.13). The
result is a second order DE for the potential Φ, sourced by δm, see below Note that both Bellini & Gleyzes papers
set αH = 0 at this point.

Φ̈ +
β1β2 + β3α

2
B k̃

2

β1 + α2
B k̃

2
HΦ̇ +

β1β4 + β1β5 k̃
2 + c2sα

2
B k̃

4

β1 + α2
B k̃

2
H2Φ = − 1

2M2
∗

[
β1β6 + β7α

2
B k̃

2

β1 + α2
B k̃

2
δρm

+
β1β8 + β9α

2
B k̃

2

β1 + α2
B k̃

2
H(ρm + pm)vm −

β1β10 + β1β11 k̃
2 + 2

3α
2
B k̃

4

β1 + α2
B k̃

2
H2pmπm −

αK
α
δpm + 2H

d

dt
(pmπm)

]
, (20)

Here the functions βi ≡ βi (t) are combinations of the αi functions, given below, and k̃ = k/aH. By eliminating variables
again, one can rewrite the slip relation as:

α2
B k̃

2

[
Ψ− Φ

(
1 + αT −

4γ9

ααB

)
− pmπm

M2
∗

]
+ β1

[
Ψ− Φ(1 + αT )

γ1

β1
− pmπm

M2
∗

]
=

4γ9

H2M2
∗

[
−αB

2α
(δρm − 3H(ρm + pm)vm) +HM2

∗ Φ̇ +H
αK
2α

qm +H2 (pmπm)
]
. (21)

I am confused about the appearance of γ9 above – potentially it could be a typo in the Gleyzes paper. If this turns out
to be really crucial, I can investigate further. However, I suspect the simplified version of these equations (see below) are
the ones we might actually want to use.

β1 = −αK
ρm + pm

H2M2
∗
− 2α

(
Ḣ

H2
+ αT − αM

)
, (22)

β2 ≡ 2(2 + αM ) + 3Υ , (23)

β3 ≡ 3 + αM +
α2
B

Hα

(
αK
α2
B

)·
, (24)

β4 ≡ (1 + αT )
[
2Ḣ/H2 + 3(1 + Υ) + αM

]
+ α̇T /H , (25)

β5 ≡ c2s −
2αB(β3 − β2)

α
+
α2
B

4β1
(1 + αT )(β3 − β2) +

α2
Bβ4

4β1
, (26)

β6 ≡ β7 +
αB(β3 − β2)

α
, (27)

β7 ≡ c2s +
α2
B/2(1 + αT )− αB(αT − αM )

α
, (28)

β8 ≡ β9 −
(αK + 3αB)(β3 − β2)

α
, (29)

β9 ≡ −(1 + 3c2s + αT ) +
α2
B

Hα

(
αK
α2
B

)·
, (30)

β10 ≡ −6(1 + Υ)− 4Ḣ/H2 , (31)

β11 ≡
2

3
− α2

B

2β1

[
(2− αM ) + 2Ḣ/H2

]
− α4

B

2β1Hα

(
αK
α2
B

)·
(32)

γ1 ≡ αK
ρD + pD
4H2M2

∗
− 3α2

B

Ḣ

H2
, (33)

γ9 ≡ α
αT − αM

2
. (34)
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with

α = αK +
3

2
α2
B (35)

12β1H
3M2

∗Υ ≡ 2αM2
∗

{[
Ḣ + (αT − αM )H2

]·
+ (3 + αM )H

[
Ḣ + (αT − αM )H2

]}
(36)

+ αK ṗm − (ρm + pm)H(αK + 3αB)(αT − αM ) +
3

2
(ρm + pm)

α4
B

α

(
αK
α2
B

)·
(37)

c2s = −
(2− αB)

[
Ḣ − (αM − αT )H2 −H2αB/2(1 + αT )

]
−Hα̇B + (ρm + pm)/M2

∗

H2α
(38)

4.2 Pressureless dust matter sector

Eqs.(20) and (21) are still pretty ugly. The matter source terms, at least, can be somewhat simplified if we restrict to the
case of pressureless matter, setting pm = πm = 0. Furthermore, Bellini et al. argue that the velocity perturbation vm can
be neglected on subhorizon scales. Implementing these simplifications:

Φ̈ +
β1β2 + β3α

2
B k̃

2

β1 + α2
B k̃

2
HΦ̇ +

β1β4 + β1β5 k̃
2 + c2sα

2
B k̃

4

β1 + α2
B k̃

2
H2Φ = − 1

2M2
∗

[
β1β6 + β7α

2
B k̃

2

β1 + α2
B k̃

2
δρm

]
, (39)

α2
B

k2

a2

[
Ψ− Φ

(
1 + αT +

2 (αM − αT)

αB

)]
+ β1

[
Ψ− Φ (1 + αT)

(
1− 2αH2 (αM − αT)

β1

)]
= (αM − αT)

[
αB

ρmδm
M2

∗
− 2Hα Φ̇

]
. (40)

The system is closed by the standard evolution equations for CDM:

δ̇m −
k2

a2
vm = 3Φ̇ , v̇m = −Ψ , (41)

Eqs.(39) - (41) are then what one might code up to solve for the evolution of δm, from which the growth rate could be
computed.

Alternatively, I guess eq.(39) could be rewritten as a second order DE for δm instead of Φ, with a little work. Let me
know if this is something that we would really like to see.

5 Quasistatic Limit

There are two methods of taking the quasistatic limit, which only seem to agree in the extreme k →∞, scale-independent
limit. Note that less extreme limits retaining some k-dependence have also been studied (TB: more work needed to fill in
details here).

There is also a choice of whether to parameterise the Poisson equation for Φ (which is what drops out of the Einstein
equations when the line element in eq.1 is used), or the Poisson equation for Ψ (since this is the potential that controls
growth of dust perturbations in GR). I will follow Gleyzes route here, and parameterise the potential that controls growth
(Ψ):

So, the quasistatic (QS) parameterisation functions we’ll use are, in Fourier space:

−2
k2

a2
Ψ = 8πGeff(z)ρmδm

= −2
k2

a2
ΨGR ×

Geff(z)

GN
(42)

for the growth potential; note that in the QS limit ∆m u δm, and so this is what appears on the RHS.
We use the standard definition of slip:

γ(z) =
Φ

Ψ
(43)
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and the lensing parameter:

−k
2

a2
(Φ + Ψ) = −k

2

a2
Ψ [1 + γ(z)]

= −k
2

a2
ΨGR

Geff(z)

GN
[1 + γ(z)]

= −k
2

a2
ΨGR × 2Σ(z) (44)

⇒ Σ(z) =
1

2

Geff(z)

GN
[1 + γ(z)] (45)

Note that Σ includes a factor of 1/2 in its definition, such that the GR limit is Σ = 1. Then Geff is given by:

Geff

GN
=

(
M2
P

M2
∗

)
α c2s(1 + αT ) + 2 [−αB/2(1 + αT ) + αT − αM ]

2

α c2s
, (46)

where MP is the usual Planck mass, and α and c2s are defined in eqs.(35) and (38) above. The slip parameter is:

γ =
α c2s − αB [−αB/2(1 + αT ) + αT − αM ]

α c2s(1 + αT ) + 2 [−αB/2(1 + αT ) + αT − αM ]
2 , (47)

Note that αK does not feature in either of these, and hence is (effectively) impossible to constrain with QS data. αH does
not appear because we are still working with it switched off, as per section 4.

Σ can be straightforwardly found by using the above expressions and eq.(45); the resulting expression is not particularly
insightful.
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